
Journal of Global Optimization 21: 415–433, 2001.
© 2001 Kluwer Academic Publishers. Printed in the Netherlands.

415

A Comparison of Global Optimization Methods for
the Design of a High-speed Civil Transport

STEVEN E. COX1, RAPHAEL T. HAFTKA1, CHUCK A. BAKER2,∗,
BERNARD GROSSMAN2, WILLIAM H. MASON2 and LAYNE T. WATSON3

1Department of Aerospace Engineering, Mechanics & Engineering Science, P.O. Box 116250,
University of Florida, Gainesville, FL 32611-6250, USA; 2Department of Aerospace and Ocean
Engineering, Virginia Polytechnic Institute and State University, 215 Randolph Hall, Mail Stop
0203, Blacksburg, VA 24061, USA; 3Departments of Computer Science & Mathmatics, Virginia
Polytechnic Institute and State University, 630 McBryde Hall, Mail Stop 0106, Blacksburg, VA
24061, USA; ∗Current address: Engineous Software, Inc., 1800 Perimeter Park West, Suite 275,
Morrisville, NC 27560, USA

Abstract. The conceptual design of aircraft often entails a large number of nonlinear constraints
that result in a nonconvex feasible design space and multiple local optima. The design of the high-
speed civil transport (HSCT) is used as an example of a highly complex conceptual design with 26
design variables and 68 constraints. This paper compares three global optimization techniques on the
HSCT problem and two test problems containing thousands of local optima and noise: multistart local
optimizations using either sequential quadratic programming (SQP) as implemented in the design
optimization tools (DOT) program or Snyman’s dynamic search method, and a modified form of
Jones’ DIRECT global optimization algorithm. SQP is a local optimizer, while Snyman’s algorithm
is capable of moving through shallow local minima. The modified DIRECT algorithm is a global
search method based on Lipschitzian optimization that locates small promising regions of design
space and then uses a local optimizer to converge to the optimum. DOT and the dynamic search
algorithms proved to be superior for finding a single optimum masked by noise of trigonometric
form. The modified DIRECT algorithm was found to be better for locating the global optimum of
functions with many widely separated true local optima.

1. Introduction

The conceptual design of complex systems often involves optimization with a
large number of design variables involving multiple disciplines. As the number
of variables increases, the volume of the design space increases exponentially and
gradient calculations become more expensive. This increases the cost to optimize
the design over even a small range for each variable. Often the feasible design
space or the objective functions are nonconvex and may contain multiple local
optima that can trap local optimizers and prevent them from locating the best
design. To solve this problem, either multiple starting points or a global optim-
ization algorithm may be used. Both of these methods will increase the cost of the
optimization.
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Discretization errors, round-off errors, and less than fully converged iterative
calculations within analysis codes can result in noisy constraints and objective
functions. This can create additional spurious optima. A distinction is made between
these noise-generated, pseudo local optima and genuine multiple optima due to
nonconvexity. Designers are primarily concerned with locating the physically mean-
ingful local optima modeled by the analysis functions and need a way to bypass
the numerical noise. In our research we employed approximations, dynamic search
techniques, and space partitioning methods to try to overcome numerical noise.

Much research has been done to find computationally efficient methods to per-
form global optimization for high dimensional, nonconvex design spaces. Many
global optimization codes have been developed and tested for use with different
classes of problems, Floudas & Pardalos (1996). However, most of these global
optimization algorithms are specialized to a narrow class of problems. Similarly,
different local optimizers have been compared in terms of their performance as
multistart optimizers (e.g., Haim et al., 1999). One general purpose global optimiz-
ation algorithm to draw attention lately is a Lipschitzian optimizer called DIRECT,
Jones et al. (1993). It has recently been applied to airfoil design, Cramer (1998),
and modifications have been proposed to speed up the convergence, Nelson and
Papalambros (1998).

The configurational design of the high-speed civil transport (HSCT) is an ex-
ample of a high-dimensional design problem with a nonconvex feasible design
space due to nonlinear constraints and numerical noise (Knill et al., 1999). This
paper compares three global optimization methods for optimizing the design of the
HSCT. The first method uses multiple starting points to optimize the design using
sequential quadratic programming (SQP) as implemented in design optimization
tools (DOT), Vanderplaats (1995). The second method, Snyman’s dynamic search
algorithm (Snyman, 1983, 2000), is capable of passing through shallow local min-
ima to locate a better optimum but still requires multiple starting points. The third
method is the modified DIRECT, which is run only once.

In addition to the HSCT problem, two test functions were examined to explore
the performance of the optimizers on different classes of problems. The first is
a quartic polynomial with a large number of widely separated local optima. The
second is the so-called Griewank function which has a single global optimum
masked by trigonometric ‘noise’. The comparisons help to show the strengths of
each optimizer and suggest the types of problems each is best suited for.
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2. Optimizers

2.1. OPTIMIZATION PROBLEM

Three optimizers are compared based on their ability to solve the constrained
minimization problem,

minimize f (x), x = {x1, x2, . . . , xn}T

such that gj (x) � 0, j = 1, 2, . . . , m
xli � xi � xui, i = 1, 2, . . . , n

where f (x) and gj (x) may be nonconvex, nonsmooth functions.

2.2. SEQUENTIAL QUADRATIC PROGRAMMING

The commercial program DOT was used to provide multi-start local optimization
using SQP. SQP forms a quadratic approximation of the objective function over
several iterations and linear approximations for the constraints. For the initial it-
eration, it uses the function value and first derivatives of the objective function
and constraints to create the approximations and substitutes the identity matrix for
the Hessian to form a quadratic approximation of the objective function. It then
moves towards the optimum within given move limits and samples the objective
function and constraints at the stopping point to refine the quadratic approximation
and create new approximations for the constraints. DOT repeats this process until it
reaches a local optimum. Due to the use of approximations, DOT is relatively quick
to perform a single optimization and will handle a limited amount of noise without
becoming stuck in spurious local minima. DOT has been successfully used in the
past with the HSCT problem, and compared favorably to other local optimizers
(Haim et al., 1999). In order to perform a global search of the design space, DOT
was started at 100 random initial designs for the HSCT problem and up to 20 000
starting points for the test problems.

2.3. DYNAMIC SEARCH

The second optimizer tested was Snyman’s dynamic search method, Leap Frog
Optimization Procedure with Constraints, Version 3 (LFOPCV3) (Snyman, 1983,
2000). LFOPCV3 is a semiglobal optimization method that is capable of moving
through shallow local minima. The method is based on the physical analogy of
a particle rolling down hill. As the particle moves down, it builds momentum,
which carries it out of small dips in its path. At each step, LFOPCV3 subtracts
a certain fraction of the gradient of the objective function from the velocity of
the particle at the previous step. The new velocity determines the step size and
direction for the current step. When the velocity vector makes an angle of more
than 90◦ with the gradient vector, i.e., when it is descending, the velocity increases
and the particle builds up momentum to go through areas where it is ascending.
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When ascent occurs, a damping strategy is used to extract energy from the particle
to prevent endless oscillation about a minimum. The dampening strategy used in
the version of LFOPCV3 used here has been modified to increase its ability to
search further away from a local optimum. Whenever the optimizer is at a point
where the function value is higher than the best function value located so far, it
creates a shallow quadratic function centered at the best location found and uses
the slope of the quadratic function plus a small percentage of the objective function
slope to calculate the next step. This reduces the dampening when it is moving
uphill while preventing it from becoming trapped in a local optimum that is worse
than the best point found so far. For the two test functions, analytical expressions
for the gradient of the objective functions were used but the cost of LFOPCV3
was computed as if first-order finite difference methods were used. For the HSCT
problem, first-order finite differences were used with step sizes equal to 6% of the
value of each design variable.

LFOPCV3 handles constraints with a standard quadratic penalty function ap-
proach (Snyman, 2000). This causes the gradient of the penalty function to increase
as the constraint violation increases which gives a smooth gradient at the constraint
boundaries. The penalty parameter was set at 100 for the bulk of the optimiza-
tion and then switched to 10 000 for the final convergence as instructed in the
code to maximize the accuracy. In our initial experiments with this algorithm it
demonstrated the ability to move further than DOT when searching for the global
minimum and has been successfully used on functions with hundreds of local min-
ima. However, it still requires multiple starts to sample the entire design box. For
this comparison, we used the same 100 initial designs to compare the performance
with DOT for the HSCT problem and up to 20 000 starting points for the test
problems.

2.4. DIRECT

The DIRECT algorithm (Jones et al., 1993; Gablonsky, 1998; Carter et al., 2000) is
a variation of Lipschitzian optimization that uses all values for the Lipschitz con-
stant. Lipschitzian optimization requires the user to specify the Lipschitz constant,
K, which is used as a prediction of the maximum possible slope of the objective
function. Lipschitzian optimization uses the value of the objective function at the
vertices of each hypercube and K to find the hypercube with potentially the lowest
objective function value. By starting at each vertex and drawing a surface that
slopes away from the vertex with a slope of K, the minimum possible function
value at each point in the design space can be determined. The minimum possible
value is the value of the highest surface at each point. The objective function is
evaluated at the predicted minimum possible value and the process is repeated for
a set number of iterations (see Fig. 1).

DIRECT does not require the user to predict the Lipschitz constant. It uses
the function value at the center of each hypercube and the hypercube size to find
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Figure 1. Lipschitzian optimization

Figure 2. DIRECT point selection.
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Figure 3. DIRECT box division.

the hypercubes which potentially contain the optimum. A hypercube is selected if
using some Lipschitz constant K, that box could contain the lowest function value
(see Fig. 2). It can be shown that this requires the box to lie on the bottom part of
the convex hull of the set of boxes in a graph such as Fig. 2. In Fig. 2, each box
is one of four sizes. The best design from the smallest box and largest and next to
largest boxes are potentially optimal because, for each there is some value of K
where that box could contain a better design than any other box.

The DIRECT algorithm is as follows:

(1)) Normalize the search space to the unit hypercube. Let c1 be the centerpoint of
the hypercube and evaluate f (cI )

(2) Identify the set, S, of potentially optimal boxes.
(3) For each box j ∈ S:

(a) Identify the set of dimensions, I , which correspond to the longest sides of
the box. Let δ equal one-third of the length of these sides.

(b) Sample the function at the points c±δei for all i ∈ I , where c is the center
of the box and ei is the ith unit vector.

(c) Divide only the box containing c into thirds along the dimensions in I,
starting with the dimension with the lowest value of f (c ± δei) and con-
tinuing to the dimension with the highest f (c ± δe)i . A each dimension is
divided, the points c ± δei will be the center of the new boxes formed by
the division.

(4) Repeat (2) and (3) until stopping criterion is met.
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Graham’s Scan routine is used to identify the potentially optimal boxes (Jones
et al., 1993). Boxes that were not previously potentially optimal can become po-
tentially optimal in later iterations as the boxes are divided (see Fig. 3). DIRECT
can select more than one box to divide at each iteration. This can allow for a wider
search than Lipschitzian optimization and makes DIRECT ideal for parallelization.

DIRECT was found to be quick to locate regions of local optima but slow to
converge. To speed up the convergence, here DIRECT is stopped once the smallest
box reaches a specified percentage of the original box size and a local optimizer
is used for the final optimization. The optimization was stopped when the smallest
box reached was 0.01% of the original box size for the HSCT comparisons and
0.001% for the test functions presented in the next section. These values were
chosen based on initial experiments with other problems. These experiments in-
dicated that the optimizer was not very sensitive to the percentage used in the
stopping criteria and worked well for values from 0.1% down to 0.00001%. DOT
was then used starting from up to 15 of the best points analyzed by DIRECT,
which were at least a certain percentage of the width of the design space away
from the other starting points selected for local optimization. For the HSCT and
quartic functions 5% separation was used, while 0.5% separation was used for
the Griewank function. The separation used was based on general knowledge of
the types of problems being optimized. The Griewank function has trigonometric
noise with many clustered optima, the Quartic function has no noise but many
widely separated optima. The HSCT problem has some noise and a few widely
separated optima.

DIRECT uses a linear penalty function to handle constraints, gi(x) � 0, i =
1, 2, . . . , m. Initial work with this code was based on a quadratic penalty function.
This tended to over penalize design points with moderate constraint violations. Due
to the sparse sampling of the design space in the first few iterations, this penalty
function could eliminate large regions from consideration. A linear penalty func-
tion was better able to sample more of the design space while still concentrating on
the most promising regions. The augmented objective function F(x) is given as

F(x) = f (x)+
n∑
i=1

gi(x)Pi , (1)

where f is the objective function, g = (g1, g2, . . . , gm)T is the constraint vector, and
Pi is the penalty parameter, which is zero for unviolated constraints and a small
positive number for violated constraints.

The performance of DIRECT depends on the magnitude of the penalty para-
meter, P . The parameter should be as small as possible while still preventing the
optimizer from selecting an infeasible design. Choosing a value that is twice the
estimated magnitude of the largest Lagrange multiplier would help prevent the
optimizer from converging to an infeasible solution without over penalizing boxes
with an infeasible center.
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Figure 4. Griewank Function in One Dimension.

3. Simple Test Functions

The optimizers were compared for two algebraic test functions in addition to the
HSCT problems. The Griewank function was used as an example of a problem with
one true global optimum superimposed with noise. A simple quartic function was
optimized in a hypercube to examine the optimizer’s ability to locate the global
optimum from a large number of widely separated local optima. Each optimizer
was run multiple times for five, 10, and 20 design variables (DV) and the results
are given below.

The Griewank function is a quadratic function with noise in the form of a co-
sine function. Without the noise, the function is convex with one optimum. This
function was used to test how well the optimizers could move through the noise to
locate the actual optimum. The one-dimensional Griewank function is depicted in
Fig. 4.

The n-dimensional Griewank function is defined as

F(x) = 1 +
p∑
i=1

x2
i

d
−�

p

i=1 cos

(
xi√
i

)
.

The relative strength of the noise can be controlled by adjusting d. When d is small,
the Griewank function is primarily a quadratic function with a small noise compon-
ent from the cosine terms. As d is increased, the objective function becomes flatter
and the cosine portion becomes more important. The function changes from a noisy
function with one global optimum, to an almost flat surface with hundreds of nearly
equal local optima.

The constant d is taken to be 200, 1000 and 20 000 for the 5, 10, and 20
DV cases, respectively. The design domain was [−400,600]n for the DOT and
LFOPCV3 optimizers with random starting points. For DIRECT, the box had edges
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Table 1. Comparisons for 5, 10, and 20 DV Griewank functions

# of times global function evaluations 90%

optimum located per global optimum Confidence

5 DV / no. of runs

DIRECT 87 / 100 3400 3335

DOT 5 / 300 10260 23416

LFOPCV3 60 / 400 9050 19235

10 DV

DIRECT 56 / 100 11810 18550

DOT 96 / 500 1260 2604

LFOPCV3 136 / 500 32240 63598

20 DV

DIRECT 8 / 30 102650 231593

DOT 16 / 2000 19740 45265

LFOPCV3 128 / 2000 7220 16084

of length 1000 with the upper limit randomly set between 100 and 900 to ran-
domize the results for the different runs. Each optimizer was run enough times to
compute the average number of evaluations for each optimum found. The global
optimum is at x = 0. For this comparison, the optimizer was considered to have
reached the global optimum if all of the design variables were in the range ±0.1.
The optimizers were compared based on the number of function evaluations re-
quired and the number of times each optimizer located the global optimum. The
results are given in Table 1.

We use two measures of efficiency of the optimizers. The first is the average
number of function evaluations per optimum. The second measure is the number
of function evaluations needed to achieve 90% confidence that the global optimum
was found. Even though DIRECT is not random there is still chance involved.
To calculate the number of function evaluations for 90% confidence, we start by
observing that the probability of not locating the optimum with one optimization
run is

p1 = (n− 1)/n,

where n is the total number of optimization runs per optimum located. The prob-
ability of not locating the optimum in r optimizations is

pr = ((n− 1)/n)r .
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We set pr=0.1, and solve for r, which gives the number of runs needed for 90%
confidence that the global optimum was found. Multiplying this number by the
average number of function evaluations per run, a, gives the desired number of
function evaluations for 90% confidence

f90 = a
ln(0.1)

ln
(
1 − 1

n

) .
When p1 is close to one, it is easy to check that the number of function evaluations
for 90% confidence is approximately 2.3, (ln10), times the average number of func-
tion evaluations per optimum. To illustrate the difference between the two measures
of performance, consider the following example. Method A finds the optimum 40%
of the time with 100 function evaluations per run. Method B requires 300 function
evaluations but finds the optimum every time. On the average measure, method A is
better, with an average of 250 evaluations per optimum. However, three runs with
method A, requiring 300 evaluations, have (1−0.63) = 21.6% chance of missing
the optimum while method B is sure to find it.

The results in Table 1 do not give a clear advantage to any one optimizer but they
do indicate that DIRECT is not the most efficient optimizer in higher-dimensional
space. The Griewank function is smooth with an underlying quadratic shape. This
is suitable for gradient based optimization if the algorithm is capable of moving
past the weak local optima. LFOPCV3 does this by design while DOT is able to do
this by using approximations based on widely separated points.

The lack of a clear trend in Table 1 may be due to the effect of d, which was
different for each case. The relative strength of the noise changed as the number
of design variables increased. To investigate the effect of the noise on the different
optimizers, the 10 variable case was repeated for different values of d. The results
for this comparison are given in Table 2.

As expected, the optimization is easier for small values of d, where the global
optimum is more distinct from other local optima. DOT appears to be the least
sensitive to this parameter while LFOPCV3 was the most sensitive to d. The ap-
proximations used by DOT appear to allow it to move past the noise and capture
the underlying quadratic function. LFOPCV3, however, is slowed down as it passes
through the noise and is not able to locate small improvements in the local optima
for the large value of d.

The one-dimensional quartic function is given in Fig. 5. The n-dimensional
quartic function is defined as

f (x) =
n∑
i=1

[2.2(xi + ei)
2 − (xi + ei)

4],

where n is the number of dimensions and ei is a random number in the range [0.2,
0.4]. The design space was the hypercube [−2,2]n. The global optimum is at x =
2. This problem contains 3n local optima located at the constraint boundaries and
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Table 2. Effect of variation of d in 10-dimensional Griewank function

No. of times global Average no. of function 90%

optimum located evaluations per global opt. Confidence

DIRECT, 100 runs

d = 4000 19 39 480 81 958

d = 1000 56 11 810 18 550

d = 200 83 6990 7539

DOT, 500 runs

d = 4000 37 3970 8801

d = 1000 96 1260 2604

d = 200 160 620 1188

LFOPCV, 500 runs

d = 4000 25 193 410 434 117

d = 1000 136 32 240 63 598

d = 200 390 830 989

Figure 5. Quartic Test Function (e=0.3).

close to the center of each variable. This problem was used to examine the optim-
izer’s abilities to locate the global optimum for a nonconvex objective function with
a large number of widely separated local optima. The optimizer was considered to
have located the optimum if all of the design variables were greater than 1.9.

DIRECT was run for 200 random values of e for each case. LFOPCV3 and
DOT used 20,000 different starting points with random values of e in order to
get a statistically meaningful average number of function evaluations per optimum
located. The results are given in Table 3.
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For the Griewank function, none of the optimizers were 100% effective in locat-
ing the optimum. For the Quartic function, DIRECT found the optimum every time.
This means that a single run of DIRECT more than satisfies the 90% requirement.
For this reason the 90% confidence column equals the function evaluations per
optimum column for DIRECT.

DIRECT is clearly better suited for this problem than either DOT or LFOPCV3.
The space partitioning method employed by DIRECT allows it to examine a wider
range of points, which increases the likelihood of locating the basin that contains
the global optimum. It does not remain in a single basin but continues to search
other regions while refining the optima located previously.

DOT is unable to adequately capture the shape of the entire design space with
the quadratic approximation. The quadratic approximation is only good for de-
scribing small portions of the design space, which prevents it from accurately
extrapolating to the regions of other local optima.

LFOPCV3 is strictly a local optimizer for this problem. It is designed to move
through noise and weak local minima, not the deep basins found in this problem.
In order for this optimizer to find the global optimum, it must start in the basin that
contains the global optimum. For e = 0.3, the odds of starting in this region for the
5, 10, and 20 DV cases are 1 in 333, 1 in 111 000 and 1 in 123×108 respectively.
This makes multistart local optimization methods a poor choice for this type of
problem. LFOPCV3’s performance in the 5 DV case if fact indicates that, based
on the above probabilities, it is not as good at locating the global optimum as one
would expect. In many cases LFOPCV3 stopped at saddle points and points where
the slope was not zero.

4. HSCT design problem

The design problem used to compare the three optimization methods is the config-
uration design of a HSCT. The HSCT design code uses up to 26 design variables
and up to 68 constraints (MacMillin et al., 1997). The design goal is to minimize
the gross take off weight (GTOW) while satisfying 68 range, performance, and
geometric constraints.

The HSCT code uses simple structural and aerodynamic models to analyze a
conceptual design of the aircraft. In more recent versions of the code, the aerody-
namic analysis for the drag is replaced by a response surface constructed on the
basis of a large number of simulations.

The current version of the HSCT code employs an aerodynamic drag response
surface constructed by Knill et al. (1999) based on solutions of the Euler equations
(McGrory et al., 1993). Once the variable designs are selected using design of
experiments theory, the wing camber for each design is found using Carlson’s mod-
ified linear theory optimization method WINGDES (Carlson and Miller, 1974);
Carlson and Walkley, 1984). This design is then analyzed using the Euler equa-
tions. The Euler analysis is made at two angles of attack and a response surface is
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Figure 6. Definitions of design variables.

constructed for the drag polar in terms of the intervening variables CDo and K:

CD = CDo +KC2
L,

where CD is the drag coefficient, K is the drag polar shape parameter and CL is the
lift coefficient. The viscous contribution to the drag, CDo, is obtained from standard
algebraic estimates of the skin friction assuming turbulent flow (Hopkins, 1972).

Previous work with the HSCT code has demonstrated the nonconvexity of the
feasible domain and the existence of multiple local minima (Knill et al., 1999).
In addition, several analyses and suboptimizations, including range calculations
and structural weights, result in noisy performance functions. This noise adds
additional local minima and makes accurate gradient calculations difficult. Op-
timization methods must be able to deal with this noise and move from one region
of design space to another without becoming trapped in local minima.

The HSCT code optimization can work with subsets of 5, 10, 15, or 20 of the
design variables as defined in Fig. 6. The variables designated with one asterisk are
used in the 5 DV case. The 10, 15 and 20 DV cases add the variables designated
with two, three and four asterisks respectively. The variables used are described in
more detail in Knill et al. (1999).

These design cases were used to compare the performance of the optimizers.
The 5 DV cases have only one optimum, while the higher-dimensional designs
contain many local optima and nonconvex feasible regions. This allowed us to
compare the optimizers on problems of different complexities. The lowest objective
function value found for each case was taken as the global minimum.

For the HSCT problem, the range constraint had the largest effect on the ob-
jective function. Based on previous work, the HSCT requires approximately 90 lb
of fuel per mile of range deficiency, so this provides an estimate of the Lagrange
multiplier associated with that constraint. Therefore, for DIRECT the penalty con-
stant was chosen to increase the objective function by twice this much per mile of
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Table 3. Comparisons for 5, 10, and 20 DV Quartic functions

No. of times global optimum Average no. of function 90%

located / no. of runs evaluations per global opt. confidence

5 DV, DIRECT 200 / 200 1025 1025

DOT 410 / 20 000 3397 7741

LFOPCV3 8 / 20 000 2581418 5942746

10 DV

DIRECT 200 / 200 2192 2192

DOT 16 / 20 000 174189 400925

LFOPCV3 0 / 20 000 – –

20 DV

DIRECT 200 / 200 11266 11266

DOT 0 / 20 000 – –

LFOPCV3 0 / 20 000 – –

violation. The range constraint is given as

g1 = 20

(
R

5500
− 1

)
(2)

where R is the range. The objective function, f, is the gross weight normalized by
700 000 lb. This gives a value of 0.071 for the penalty multiplier. For our study we
rounded this up to 0.1.

5. HSCT results

For each design case, the HSCT code was run for 100 starting points for DOT and
LFOPCV3, and once for DIRECT. Table 4 shows the results from these runs. The
number of optima and 90% confidence columns here refer to designs within 1000
lb of the best optimum design out of all three optimizers and the number of func-
tion evaluations needed to find such a design, respectively. In order to ensure that
DIRECT could locate the same optimum with slightly different starting conditions
and numerical noise, it was run a second time for each case with the design box
perturbed by 1% (larger perturbations would degrade the quality of the response
surface). This altered the noise component of each analysis without substantially
changing the design space. In each case, DIRECT located an optimum that was
within 300 lb of the original optimum. For a small number of design variables DOT
has a large advantage over DIRECT, but this advantage diminishes with dimension,
and for the 20 design variable case, DIRECT is slightly better. LFOPCV3 did very
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Table 4. Comparison of 5, 10, 15, and 20 DV HSCT problem

Best GTOW Function No. of 90%

Located evaluations Opta Confidence

5 DV DIRECT 638 238 2345 1 2345

DOT 638 231 10 870 94 89

LFOPCV3 638 813 33 234 5 14 919

10 DV

DIRECT 624 751 9067 1 9067

DOT 624 731 29 791 12 5366

LFOPCV3 631 300 137 929 0 –

15 DV

DIRECT 603 127 40 662 1 40 662

DOT 602 685 47 440 12 8545

LFOPCV3 620 538 1,437 312 0 -

20 DV

DIRECT 588 404 51 147 1 51 147

DOT 588 586 57 428 2 65 453

LFOPCV3 620 092 418 315 0 –

aOne run for DIRECT, 100 runs each for DOT and LFOPCV3.

poorly, and was not able to find the global optimum except for the five-variable
case. LFOPCV3 was slowed down by the need to continuously calculate gradients
by finite differences while DOT was able to construct an approximation to the
problem which reduced the number of gradient calculations it required.

For the 5 DV case, each optimizer found approximately the same global op-
timum. This was expected due to earlier experiments that showed the 5 DV feasible
set was convex with only one local optimum. The difference in the design variables
is less than 1%, which can be attributed to noise in the objective function causing
premature convergence for LFOPCV3. Our implementation of DIRECT uses DOT
for the final convergence, which should cause both to reach the same design when
optimizing in the same local region. Here DOT was the most efficient optimizer by
far since it did not require more than a few starting points to locate the optimum.

For the 10 DV case, DIRECT and DOT located a design of the same weight,
with DOT being more efficient by a factor of two. The 10 DV case has distinct local
optima (Knill et al., 1999), and LFOPCV3 could not locate the global optimum.

For the 15 DV case DOT found a slightly lower weight than DIRECT and
was also much more efficient. However, this difference is less than 0.08% of the
total weight of the HSCT. This case illustrates the unpredictable performance of
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Table 5. 15 DV optima for DOT and DIRECTa

Design DOT DIRECT % Difference

variables

Root chord 1.7306 1.7116 4.2

Tip chord 0.8425 0.8563 2.3

Semispan 6.9164 6.9336 1.1

LE length in. 1.2052 1.2074 1.0

LE sweep in. 0.7128 0.7121 1.2

LE sweep out. 0.1205 0.1300 4.8

Max t/c loc. 4.8400 4.8502 0.6

LE radius 3.0660 2.4353 33.2

t /c ratio 1.9872 2.0304 5.4

Fuse radius 1 0.5176 0.5144 2.1

Fuse radius 2 0.5669 0.5699 2.0

Fuse radius 3 0.5659 0.5699 2.7

Fuse radius 4 0.4966 0.4928 2.5

Inboard nacelle 2.8293 2.8519 0.9

Fuel wt. 3.0938 3.1005 1.1

aThe design variables in Table 5 are defined in Fig. 6.

a multistart method. Out of the initial 100 random starting points, DOT was only
able to locate the global optimum once but it found seven designs with weights as
good as DIRECT’s result. To evaluate the likelihood of finding the optimum with
DOT, another 100 random starting points were chosen for DOT. DOT was unable
to locate the best optimum for this set of starting points. Examination of the design
space near the best optimum indicated that it lies in a small feasible region, which
explains the difficulty locating it. The designs found by DOT and DIRECT are
shown in Table 5. They differ only slightly in most of the design variables. This
indicates that the difference between the two is primarily due to noise preventing
the optimizer from moving through a narrow region of similar weights to find the
best optimum.

For the 20 DV case, DIRECT performed slightly better than DOT. The weights
they found differed by only 200 lb, but the design variables differed by as much as
35% of their respective ranges. This case showed that DIRECT is still able to per-
form well for a 20-dimensional design space. The number of function evaluations
increased rapidly for more than 10 dimensions, but it was still less expensive than
the two multistart methods for the 20 DV case. Without prior knowledge of the
design space, it is difficult to decide on the number of starting points to choose for
the multistart methods.

In an effort to determine the number of local optima scattered throughout the
design space, the optimum designs from the 10 DV DOT optimizations were com-
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Figure 7. Distribution of design variables for the best 25 designs from the 10 DV HSCT case.

pared. Figure 7 shows the distribution of the design variables for the 25 best op-
timizations found by DOT over the range of each design variable. The range of
the GTOW was only 16 000 lb. but some of the variables differ by their entire
range. This plot indicates that there are some variables, such as the root chord,
t /c ratio, the inboard nacelle location, fuel weight, and the outboard sweep angle,
which tend to a small range of values for the optimized design. The other variables
fluctuate widely without affecting the GTOW much. This indicates that the design
space contains narrow channels with slowly varying weights. DOT easily locates
these regions with similar weights but can not always move through them without
becoming trapped by minor fluctuations in the objective function.

The HSCT problem has both physical local optima and numerical noise. The
good performance of DIRECT and DOT for this problem is consistent with the
fact that DOT handled well low amplitude noise for the Griewank test function,
and DIRECT handled well widely separated local optima for the quartic func-
tion. As the dimensionality of the problem increases, the number of substantially
separated optima can increase exponentially, and the effectiveness of multistart
methods appears to deteriorate faster than that of DIRECT. The poor performance
of LFOPCV3 compared to the Griewank problem may have to do with the fact that
the noise for the HSCT problem is not differentiable.

6. Concluding remarks

Three optimization procedures were tested for the global optimization of a HSCT.
DOT (a local optimizer used with sequential quadratic programming) and
LFOPCV3, (a semi-global optimizer) were applied with random multistarts. A
modification of DIRECT, (a global Lipschitzian optimizer which used SQP for
the final convergence) was applied in a single run.

The three optimization procedures were first tested on two simple algebraic
problems. The Griewank function is a convex function superimposed with low
amplitude noise from a trigonometric function. The quartic test function does not



432 S.E. COX ET AL.

have any noise but displays a large number of widely separated local optima. These
two functions revealed that the two multistart procedures, DOT and LFOPCV3,
dealt well with trigonometric noise, while DIRECT was much more effective in
finding the global minimum among widely separated local optima.

The HSCT problem presents a combination of numerical noise and multiple
physical optima, and thus has elements from both test functions. For a small num-
ber of design variables DOT had a large advantage over DIRECT, but the advantage
decreased with increasing dimensionality, with the two having similar performance
for the 20 variable case. LFOPCV3 did poorly for the HSCT problem, possibly
because of the effect of the noise on the derivatives that have to be calculated by its
search procedure more frequently than by DOT.
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